Two sets

Marek Bienias, Szymon Głąb Robert Rałowski and Szymon Żeberski

Winter School in Abstract Analysis section Set Theory

Hejnice 2012

Notation and Terminology

Let $(X,+)$ be any uncountable Polish abelian group and let
$I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons and
- I translation invariant.

The σ-ideal $/$ is nice if has properties as above.
Let $\mathcal{B}_{+}(I)=\operatorname{Bore} I(X) \backslash I$ be set of all I-positive Borel sets.
$\operatorname{Perf}(X)$ stands for set of all perfect subsets of X
In most part of presentation X is a real plane \mathbb{R}^{2} and + denotes adding vectors.

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ ideal as above. Then for any $\mathscr{F} \subset I$ let

$$
\operatorname{cov}(\mathscr{F}, I)=\min \{|\mathscr{A}|: \mathscr{A} \subset \mathscr{F} \wedge \bigcup \mathscr{A}=X\}
$$

Lines be the set of all lines in \mathbb{R}^{2}.
$\mathbb{L} \sigma$-ideal of null sets and
$\mathbb{K} \sigma$-ideal of all meager subsets of X.
Fact
$\operatorname{cov}_{h}($ Lines, $\mathbb{L})=2^{\omega}, \operatorname{cov}_{h}($ Lines, $\mathbb{K})=2^{\omega}$.

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ ideal as above. Then for any $\mathscr{F} \subset I$ let

$$
\operatorname{cov}(\mathscr{F}, I)=\min \{|\mathscr{A}|: \mathscr{A} \subset \mathscr{F} \wedge \bigcup \mathscr{A}=X\}
$$

$$
\operatorname{cov}_{h}(\mathscr{F}, I)=\min \left\{|\mathscr{A}|: \mathscr{A} \subset \mathscr{F} \wedge\left(\exists B \in \mathcal{B}_{+}(I)\right) \bigcup \mathscr{A}=B\right\}
$$

Lines be the set of all lines in \mathbb{R}^{2}.
$\mathbb{L} \sigma$-ideal of null sets and
$\mathbb{K} \sigma$-ideal of all meager subsets of X.
Fact
$\operatorname{cov}_{h}($ Lines, $\mathbb{L})=2^{\omega}, \operatorname{cov}_{h}($ Lines, $\mathbb{K})=2^{\omega}$.

Definition (Two-set)

A subset $X \subseteq \mathbb{R}^{2}$ of the real plane is a two-set iff meets every line in exactly two points.

Theorem (Mazurkiewicz 1914)
There exist a two-set.

Two-sets with a Hamel base

Definition

Let X be any uncountable Polish space. We say that a set $A \subseteq X$ is completely I-nonmeasurable iff

$$
\left(\forall B \in \mathcal{B}_{+}(X)\right) A \cap B \neq \emptyset \wedge B \cap A^{c} \neq \emptyset
$$

Note that if $I=[X]^{\leq \omega}$ then A is Bernstein set. Moreover if $I=\mathbb{L}$ then A is completely nonmeasurable subset of X.

Theorem
 there exists a two point set $A \subseteq \mathbb{R}^{2}$, that is completely I-nonmeasurable Hamel base.

Two-sets with a Hamel base

Definition

Let X be any uncountable Polish space. We say that a set $A \subseteq X$ is completely I-nonmeasurable iff

$$
\left(\forall B \in \mathcal{B}_{+}(X)\right) A \cap B \neq \emptyset \wedge B \cap A^{c} \neq \emptyset
$$

Note that if $I=[X]^{\leq \omega}$ then A is Bernstein set. Moreover if $I=\mathbb{L}$ then A is completely nonmeasurable subset of X.

Theorem
Let $I \subseteq P\left(\mathbb{R}^{2}\right)$ be any nice σ-ideal with $\operatorname{cov}_{h}($ Lines, $I)=2^{\omega}$. Then there exists a two point set $A \subseteq \mathbb{R}^{2}$, that is completely I-nonmeasurable Hamel base.

There exists a two point set $A \subseteq \mathbb{R}^{2}$, that is completely nonmeasurable Hamel base.

Two-sets with a Hamel base

Definition

Let X be any uncountable Polish space. We say that a set $A \subseteq X$ is completely I-nonmeasurable iff

$$
\left(\forall B \in \mathcal{B}_{+}(X)\right) A \cap B \neq \emptyset \wedge B \cap A^{c} \neq \emptyset
$$

Note that if $I=[X] \leq \omega$ then A is Bernstein set. Moreover if $I=\mathbb{L}$ then A is completely nonmeasurable subset of X.

Theorem
Let $I \subseteq P\left(\mathbb{R}^{2}\right)$ be any nice σ-ideal with $\operatorname{cov}_{h}($ Lines, $I)=2^{\omega}$. Then there exists a two point set $A \subseteq \mathbb{R}^{2}$, that is completely I-nonmeasurable Hamel base.

Corollary

There exists a two point set $A \subseteq \mathbb{R}^{2}$, that is completely nonmeasurable Hamel base.

Proof

Let $\left\{L_{\xi}: \xi<\mathfrak{c}\right\}$ all straight lines in the plane \mathbb{R}^{2},
let $\left\{B_{\xi}: \xi<c\right\}$ be an enumeration of all positive Bore sets in \mathbb{R}^{2}
$\left\{h_{\xi}: \xi<c\right\}$ be a Hame base of \mathbb{R}^{2} over \mathbb{Q}.
Define $\left\{A_{\varepsilon}: \xi<\mathfrak{c}\right\}$ of subsets of \mathbb{R}^{2} such that for every $\xi<c$

1. $\left|A_{\xi}\right|<\omega$;
2. $\bigcup_{\zeta<\xi} A_{\zeta}$ does not have three collinear points;
3. $\bigcup A_{C}$ contains precisely two points of L_{ξ};

4. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ is linearly independent over \mathbb{Q}; 6. $h_{\xi} \in \operatorname{span}\left(\bigcup_{\zeta<\xi} A_{\zeta}\right)$

Then, the set $A=\bigcup A_{\xi}$ will have desired property.

Proof

Let $\left\{L_{\xi}: \xi<\mathfrak{c}\right\}$ all straight lines in the plane \mathbb{R}^{2}, let $\left\{B_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of all positive Borel sets in \mathbb{R}^{2}
$\left\{h_{\xi}: \xi<c\right\}$ be a Hame base of \mathbb{R}^{2} over \mathbb{Q}.
Define $\left\{A_{\xi}: \xi<c\right\}$ of subsets of \mathbb{R}^{2} such that for every $\xi<c$,

Proof

Let $\left\{L_{\xi}: \xi<\mathfrak{c}\right\}$ all straight lines in the plane \mathbb{R}^{2}, let $\left\{B_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of all positive Borel sets in \mathbb{R}^{2} $\left\{h_{\xi}: \xi<\mathfrak{c}\right\}$ be a Hamel base of \mathbb{R}^{2} over \mathbb{Q}.

Proof

Let $\left\{L_{\xi}: \xi<\mathfrak{c}\right\}$ all straight lines in the plane \mathbb{R}^{2}, let $\left\{B_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of all positive Borel sets in \mathbb{R}^{2} $\left\{h_{\xi}: \xi<\mathfrak{c}\right\}$ be a Hamel base of \mathbb{R}^{2} over \mathbb{Q}.
Define $\left\{A_{\xi}: \xi<\mathfrak{c}\right\}$ of subsets of \mathbb{R}^{2} such that for every $\xi<\mathfrak{c}$,

1. $\left|A_{\xi}\right|<\omega$;
2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
3. $\bigcup A_{\zeta}$ contains precisely two points of L_{ξ};

4. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ is linearly independent over \mathbb{Q}; 6. $h_{\zeta} \in \operatorname{spano}\left(\| A_{\zeta}\right)$

Proof

Let $\left\{L_{\xi}: \xi<\mathfrak{c}\right\}$ all straight lines in the plane \mathbb{R}^{2}, let $\left\{B_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of all positive Borel sets in \mathbb{R}^{2} $\left\{h_{\xi}: \xi<\mathfrak{c}\right\}$ be a Hamel base of \mathbb{R}^{2} over \mathbb{Q}.
Define $\left\{A_{\xi}: \xi<\mathfrak{c}\right\}$ of subsets of \mathbb{R}^{2} such that for every $\xi<\mathfrak{c}$,

1. $\left|A_{\xi}\right|<\omega$;
2. $\bigcup A_{\zeta}$ does not have three collinear points; $\zeta \leq \xi$
3. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of L_{ξ};

4. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ is linearly independent over \mathbb{Q};

Proof

Let $\left\{L_{\xi}: \xi<\mathfrak{c}\right\}$ all straight lines in the plane \mathbb{R}^{2}, let $\left\{B_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of all positive Borel sets in \mathbb{R}^{2} $\left\{h_{\xi}: \xi<\mathfrak{c}\right\}$ be a Hamel base of \mathbb{R}^{2} over \mathbb{Q}.
Define $\left\{A_{\xi}: \xi<\mathfrak{c}\right\}$ of subsets of \mathbb{R}^{2} such that for every $\xi<\mathfrak{c}$,

1. $\left|A_{\xi}\right|<\omega$;
2. $\bigcup A_{\zeta}$ does not have three collinear points; $\zeta \leq \xi$
3. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of L_{ξ};
4. $B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset$;
5. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ is linearly independent over \mathbb{Q};

Proof

Let $\left\{L_{\xi}: \xi<\mathfrak{c}\right\}$ all straight lines in the plane \mathbb{R}^{2}, let $\left\{B_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of all positive Borel sets in \mathbb{R}^{2} $\left\{h_{\xi}: \xi<\mathfrak{c}\right\}$ be a Hamel base of \mathbb{R}^{2} over \mathbb{Q}.
Define $\left\{A_{\xi}: \xi<\mathfrak{c}\right\}$ of subsets of \mathbb{R}^{2} such that for every $\xi<\mathfrak{c}$,

1. $\left|A_{\xi}\right|<\omega$;
2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
3. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of L_{ξ};
4. $B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset$;
5. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ is linearly independent over \mathbb{Q};
6. $h_{\xi} \in \operatorname{span}_{\mathbb{Q}}\left(\bigcup_{\zeta \leq \xi} A_{\zeta}\right)$.

Proof

Let $\left\{L_{\xi}: \xi<\mathfrak{c}\right\}$ all straight lines in the plane \mathbb{R}^{2}, let $\left\{B_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of all positive Borel sets in \mathbb{R}^{2} $\left\{h_{\xi}: \xi<\mathfrak{c}\right\}$ be a Hamel base of \mathbb{R}^{2} over \mathbb{Q}.
Define $\left\{A_{\xi}: \xi<\mathfrak{c}\right\}$ of subsets of \mathbb{R}^{2} such that for every $\xi<\mathfrak{c}$,

1. $\left|A_{\xi}\right|<\omega$;
2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
3. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of L_{ξ};
4. $B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset$;
5. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ is linearly independent over \mathbb{Q};
6. $h_{\xi} \in \operatorname{span}_{\mathbb{Q}}\left(\bigcup_{\zeta \leq \xi} A_{\zeta}\right)$.

Then, the set $A=\bigcup_{\xi<c} A_{\xi}$ will have desired property.

Marczewski ideal

Definition
If X is Polish space then $A \subseteq \mathbb{R}$ is s_{0}-Marczewski iff

$$
(\forall P \in \operatorname{Perf}(X))(\exists Q \in \operatorname{Perf}(X)) Q \subseteq P \wedge Q \cap A=\emptyset
$$

and $A \subseteq \mathbb{R}$ is s-Marczewski (s-measurable) iff
$(\forall P \in \operatorname{Perf}(X))(\exists Q \in \operatorname{Perf}(X)) Q \subseteq P \wedge(Q \cap A=\emptyset \vee Q \subseteq A)$.
Theom
There exists a two point set $A \subseteq \mathbb{R}^{2}$, that is s_{0}-Marczewski.

Marczewski ideal

Definition
If X is Polish space then $A \subseteq \mathbb{R}$ is s_{0}-Marczewski iff

$$
(\forall P \in \operatorname{Perf}(X))(\exists Q \in \operatorname{Perf}(X)) Q \subseteq P \wedge Q \cap A=\emptyset
$$

and $A \subseteq \mathbb{R}$ is s-Marczewski (s-measurable) iff
$(\forall P \in \operatorname{Perf}(X))(\exists Q \in \operatorname{Perf}(X)) \quad Q \subseteq P \wedge(Q \cap A=\emptyset \vee Q \subseteq A)$.

Theorem
There exists a two point set $A \subseteq \mathbb{R}^{2}$, that is s_{0}-Marczewski.

Definition (Partial two-set)

We say that $A \subseteq \mathbb{R}^{2}$ is a partial two-set iff meets every line at most two times.
It is well known that the unit circle is a partial two-set which cannot be extended to two-set.

Theorem

There exists a two point set $A \subseteq \mathbb{R}^{2}$, that is s-nonmeasurable. Moreover A contains a subset of the unit circle of full outer measure.

Proof.

Let C be a unit circle, Lines $=\left\{I_{\xi}: \xi<\mathfrak{c}\right\}$ and $\mathcal{B}_{+}(C, \mathbb{L})=\left\{P_{\xi}: \xi<\mathfrak{c}\right\}$. Define a sequences $\left\{A_{\xi}: \xi<\mathfrak{c}\right\}$
$\left\{y_{\xi}: \xi<\mathfrak{c}\right\}$ s.t. for every $\xi<\mathfrak{c}$

1. $\left|A_{\xi}\right|<\omega$;
2. $\bigcup A_{\zeta}$ does not contain three collinear points; $\zeta \leq \xi$
3. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of L_{ξ};
4. $P_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset$;
5. $y_{\xi} \in P_{\xi}$;
6. $A_{\xi} \cap\left\{y_{\zeta}: \zeta \leq \xi\right\}=\emptyset$.

Then $A=\bigcup_{\xi<\mathfrak{c}} A_{\xi}$ is required set.

Iso-covering set

Definition (κ-set)
We say that $A \subseteq \mathbb{R}^{2}$ is an κ-set iff every line meets exactly in κ-points.

Definition (κ-iso cov)
We say that $A \subseteq \mathbb{R}^{2}$ is κ-iso cov set iff for every $X \in\left[\mathbb{R}^{2}\right]^{\kappa}$ there exist isometry g on the real plane such that $g[X] \subseteq A$.

Theorem
For $n \geq 2$ there exists n-set which is not 2-iso cov set
Theorem
For $n \geq 2$ there exist n-set which is n-iso cov set
Theorem
There exists ω-set which is not 2 -iso cov set
Theorem
There exists ω-set which is ω-iso cov set

Theorem
For $n \geq 2$ there exists n-set which is not 2 -iso cov set
Theorem
For $n \geq 2$ there exist n-set which is n-iso cov set
Theorem
There exists ω-set which is not 2-iso cov set
Theorem
There exists ω-set which is ω-iso cov set

Decomposition of two-sets

Theorem
Every two-set can be decomposed onto two bijections of the real line \mathbb{R}.

Theorem
There exists a null and meager two-set $A \subseteq \mathbb{R}^{2}$ s.t. every Lebesgue measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ cannot be contained in A.
and
Theorem
There exists a null and meager two-set $A \subseteq \mathbb{R}^{2}$ s.t. every Baire measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ cannot be contained in A.

Decomposition of two-sets

Theorem
Every two-set can be decomposed onto two bijections of the real line \mathbb{R}.

Theorem
There exists a null and meager two-set $A \subseteq \mathbb{R}^{2}$ s.t. every Lebesgue measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ cannot be contained in A.
and
Theorem
There exists a null and meager two-set $A \subseteq \mathbb{R}^{2}$ s.t. every Baire measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ cannot be contained in A.

Two-set vs. Luzin set

Fact

Any two-set cannot be

- Bernstein set
- Luzin set and
- Sierpiński set.

Proof.

1) Each line L is a perfect set such that $|A \cap L|=2$, so A cannot be Bernstein.
2) Let M be a perfect meager subset of \mathbb{R}. Then $M \times \mathbb{R}$ is meager and $|(M \times \mathbb{R}) \cap A|=2|M|=\mathfrak{c}$.
3) Let N be a perfect null subset of \mathbb{R}. Then $N \times \mathbb{R}$ is null and $|(N \times \mathbb{R}) \cap A|=2|N|=c$.

Theorem
Assume CH then

1. there exists partial two point set A that is Luzin set,
2. there exists partial two point set B that is Sierpiński set.

Partial two-sets with combinatorial properties

Definition (ad family)

The set $\mathcal{A} \subset[\omega]^{\omega}$ is almost disjoint family (ad) iff any two distinct members of \mathcal{A} has finite intersection.
\mathcal{A} is (mad) iff \mathcal{A} is a maximal respect to the \subseteq.
Definition (Eventually different functions)
We say that $\mathcal{A} \subseteq \omega^{\omega}$ is eventually different family in Baire space ω^{ω} iff every two distinct members $x, y \in \mathcal{A}$ are equal only on the finite subset of the ω.
\mathcal{A} is maximal eventually different family iff \mathcal{A} is a maximal respect to the inclusion relation.

Theorem (CH)
Let $h: \mathbb{R} \rightarrow \omega^{\omega}$ be a standard Borel bijection. Then there exist the partial two-point set $A \subseteq \mathbb{R}^{2}$ on the real plane such that
$\left\{h\left(\pi_{i}(x)\right) \in \omega^{\omega}: x \in A \wedge i \in\{0,1\}\right\}$ - max. eventually different.
where π_{i} are projections onto i-th axis.
Remark
The same result is about mad family instead maximal evantually different functions family.

Theorem (CH)
Let $h: \mathbb{R} \rightarrow \omega^{\omega}$ be a standard Borel bijection. Then there exist the partial two-point set $A \subseteq \mathbb{R}^{2}$ on the real plane such that

$$
\left\{h\left(\pi_{i}(x)\right) \in \omega^{\omega}: x \in A \wedge i \in\{0,1\}\right\} \text { - max. eventually different. }
$$

where π_{i} are projections onto i-th axis.

Remark

The same result is about mad family instead maximal evantually different functions family.

Proof

Consider sequence ($M_{\alpha}: \alpha<\omega_{1}$) the increrasing continuous chain of the countable subetst of \mathbb{R} with $\mathbb{R} \subseteq \bigcup_{\alpha<\omega_{1}} M_{\alpha}$
Let us construct the transfinite sequence $\left(A_{\alpha}, F_{\alpha}\right): \alpha<\omega_{1}$ s.t.

1. $\left(\forall \alpha<\omega_{1}\right) A_{\alpha}=\left\{x_{\xi} \in \mathbb{R}^{2}: \xi<\alpha\right\} \in M_{\alpha}$ is a partially two-point set,
2. $\left(\forall \alpha<\omega_{1}\right) F_{\alpha}=\left\{h \circ \pi_{i}\left(x_{\xi}\right): x_{\xi} \in A_{\alpha} \wedge i \in\{1,2\}\right\}$ forms family eventually different functions,
3. $\left(\forall \alpha<\omega_{1}\right)\left(\forall u \in M_{\alpha} \cap\left(\omega^{\omega} \backslash F_{\alpha}\right)\right)\left(\exists v \in F_{\alpha+1}\right)|u \cap v|=\omega$.

Correctness: let us assume that A_{α} is build at $\alpha<\omega_{1}$ step.
Enumerate $\left(\omega^{\omega} \backslash F_{\alpha}\right) \cap M_{\alpha}=\left\{y_{n}: n \in \omega\right\}$.
In H_{κ} model we can to construct the sequence $x_{n}: n \in \omega$ as follows if $\left\{x_{k}: k<n\right\}$ is build then we can choose x_{n} such that

$$
\text { for any } u \text { if } u \in F_{\alpha} \cup\left\{x_{k}: k<n\right\} \text { then }
$$

$$
\left|h\left(x_{n}\right) \cap u\right|<\omega \wedge\left(h^{-1}\left(x_{n}\right), h^{-1}\left(y_{n}\right)\right) \notin W_{\alpha}
$$

where $W_{\alpha}=\left\{I \in\right.$ lines: $\left.\left|I \cap Z_{\alpha}\right|=2\right\}$ and
$Z_{\alpha}=\left\{(x, y): x, y \in h^{-1}\left[F_{\alpha}\right] \cup\left\{x_{k}: k<n\right\} \cup\left\{y_{n}: n \in \omega\right\} \wedge x \neq y\right\}$.
Using properties (1), (2) and (3) it is easy to show that $A=\bigcup_{\alpha<\omega_{1}} A_{\alpha}$ fulfil the assertion of this Theorem.

Here we adopt the proof of the Kunen Theorem about existence of the indestructible mad family (see [Ku] for example).

Theorem
It is consistent with ZFC theory that $\neg \mathrm{CH}$ and there exists partial two-set for which the image of the set of all coordinates forms the mad family size ω_{1} by standard bijection $h: \mathbb{R} \rightarrow P(\omega)$.

Theorem
It is consistent that $\neg \mathrm{CH}$ and

$$
\left(\exists C \in\left[\mathbb{R}^{2}\right]^{\omega_{2}}\right)(\exists A \in \mathbb{L})\left(\exists D_{1} \in[C]^{\omega_{1}}\right)
$$

s.t

$$
A+D_{1}=\mathbb{R}^{2} \wedge C \text { is partial two-set. }
$$

Moreover the set C is a Luzin set.

Proof

Let V - ground model with CH .
Now $\mathbb{P}=F n\left(\omega_{2}, 2\right)$ be forcing adding indenpendetly $c_{\alpha}: \alpha<\omega_{2}$
Cohen points on the \mathbb{R}^{2}.
If $\alpha<\beta<\gamma<\omega_{2}$ then c_{γ} is Cohen over c_{α} and c_{β}.
Then $c_{\gamma} \notin I_{\alpha, \beta}$ where $c_{\alpha}, c_{\beta} \in I_{\alpha, \beta}$ forms line $I_{\alpha, \beta} \in \mathbb{K}$.
We see that $C=\left\{c_{\alpha}: \alpha<\omega_{2}\right\}$ is partial two set.

C is Luzin:

Let G be \mathbb{P}-generic ultrafilter over V.
Take $x \in \omega^{\omega} \cap V[G]$ be any Borel code for a meager subset of \mathbb{R}^{2}.
Find $I \in\left[\omega_{2}\right]^{\omega}$ and nice name $\tilde{x} \in V^{F n(I, 2)}$ for x.
Define
$G_{I}=\{p \in F n(I, 2): p \in G\} G_{\omega_{2} \backslash I}=\{p \in F n(\omega \backslash I, 2): p \in G\}$.
Then

- $V[G]=V\left[G_{1}\right]\left[G_{\omega_{2} \backslash I}\right]$
- $x \in V\left[G_{l}\right]$ and
- for any $\alpha \in \omega_{2} \backslash / c_{\alpha} \in V[G] \backslash V\left[G_{l}\right]$ is Cohen over $V\left[G_{l}\right]$.

Then $C \cap \# x \subseteq\left\{c_{\alpha}: \alpha \in I\right\}$ is countable.

... Proof

Consider a Marczewski decomposition $A \cup B=\mathbb{R}^{2}$ where $A \in \mathbb{L}, B \in \mathbb{K}$ and $A \cap B=\emptyset$.
Choose $D \in V[G] \cap\left[\omega_{2}\right]^{\omega_{1}}$ and $x \in V[G]$
Then by c.c.c. of $F n\left(\omega_{2}, 2\right)$ we have

- $\exists D_{1} \in V \cap\left[\omega_{2}\right]^{\omega_{1}} D \subseteq D_{1}$ and
- $\left(\exists I \in\left[\omega_{2}\right]^{\omega}\right) V[G]=V\left[G_{l}\right]\left[G_{\omega_{2} \backslash I}\right]$ and $x \in V\left[G_{l}\right]$
- $(\forall \alpha \in D \backslash I) c_{\alpha} \in A-\{x\}$

Then finally in $V[G]$ we have $\mathbb{R}^{2} \subseteq A-C_{D_{1} \backslash /}$ where $C_{D_{1} \backslash I}=\left\{c_{\alpha} \in C: \alpha \in D_{1} \backslash I\right\}$.

Thank You

References

直 Carlson T．J．，Strong measure zero and strongly meager sets， Proc．Amer．Math．Soc． 118 No． 2 （1993），577－586．

嗇 Ciesielski，Krzysztof，Set theory for the working mathematician．London Mathematical Society Student Texts， 39．Cambridge University Press，Cambridge，1997．xii +236 pp． ISBN：0－521－59441－3；0－521－59465－0．
Dijkstra，J．J．，Kunen K．，van Mill J．，Hausdorff measures and two point set extensions，Fund．Math．， 157 （1998），43－60．

Dijkstra，J．J．and van Mill J．，Two point set extensions－a counterexample，Proc．Amer．Math．Soc． 125 （1997）， 2501－2502．
围 Kunen K．，Set Theory，An Introduction to Indepedence Proofs， North Holland，Amsterdam，New York，London（1980），
(Larman, D. G., A problem of incidence. J. London Math. Soc. 431968 407-409.

目 Mauldin, R. D., On sets which meet each line in exactly two points. Bull. London Math. Soc. 30 (1998), no. 4, 397-403.

圊 Mazurkiewicz S., O pewnej mnogości płaskiej, która ma z każdạ prostạ dwa i tylko dwa punkty wspólne (Polish), Comptes Rendus des Séances de la Société des Sciences et Lettres de Varsovie 7 (1914), 382-384; French transl.: Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs, in: Stefan Mazurkiewicz, Traveaux de Topologie et ses Applications (K. Borsuk et al., eds.), PWN, Warsaw, 1969, pp. 46-47.

围 Miller，A．W．，Infinite combinatorics and definability．Ann． Pure Appl．Logic 41 （1989），no．2，179－203．

囲 Schmerl，James H．，Some 2－point sets．Fund．Math． 208 （2010），no．1，87－91．

目 Walsh，J．T．，Marczewski sets，measure and the Baire property， Fund．Math．， 129 （1988），83－89．

