Two sets

Marek Bienias, Szymon Głąb <u>Robert Rałowski</u> and Szymon Żeberski

Winter School in Abstract Analysis section Set Theory Hejnice 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation and Terminology

Let (X, +) be any uncountable Polish abelian group and let $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons and
- I translation invariant.

The σ -ideal I is nice if has properties as above. Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all I-positive Borel sets. Perf(X) stands for set of all perfect subsets of XIn most part of presentation X is a real plane \mathbb{R}^2 and + denotes adding vectors.

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ ideal as above. Then for any $\mathscr{F} \subset I$ let

$$cov(\mathscr{F}, I) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathscr{F} \land \bigcup \mathscr{A} = X\}$$

 $cov_h(\mathscr{F}, I) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathscr{F} \land (\exists B \in \mathcal{B}_+(I))) \mid \mathscr{A} = B\}$

Lines be the set of all lines in \mathbb{R}^2 . $\mathbb{L} \ \sigma$ -ideal of null sets and $\mathbb{K} \ \sigma$ -ideal of all meager subsets of X.

Fact $cov_h(Lines, \mathbb{L}) = 2^{\omega}, cov_h(Lines, \mathbb{K}) = 2^{\omega}.$

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ ideal as above. Then for any $\mathscr{F} \subset I$ let

$$cov(\mathscr{F}, I) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathscr{F} \land \bigcup \mathscr{A} = X\}$$

$$\mathsf{cov}_h(\mathscr{F}, I) = \mathsf{min}\{|\mathscr{A}|: \ \mathscr{A} \subset \mathscr{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$

Lines be the set of all lines in \mathbb{R}^2 . $\mathbb{L} \ \sigma$ -ideal of null sets and $\mathbb{K} \ \sigma$ -ideal of all meager subsets of X.

Fact $cov_h(Lines, \mathbb{L}) = 2^{\omega}, cov_h(Lines, \mathbb{K}) = 2^{\omega}.$

Definition (Two-set)

A subset $X \subseteq \mathbb{R}^2$ of the real plane is a two-set iff meets every line in exactly two points.

Theorem (Mazurkiewicz 1914)

There exist a two-set.

Two-sets with a Hamel base

Definition

Let X be any uncountable Polish space. We say that a set $A \subseteq X$ is completely *I*-nonmeasurable iff

$$(\forall B \in \mathcal{B}_+(X)) \ A \cap B \neq \emptyset \ \land \ B \cap A^c \neq \emptyset$$

Note that if $I = [X]^{\leq \omega}$ then A is Bernstein set. Moreover if $I = \mathbb{L}$ then A is completely nonmeasurable subset of X.

Theorem

Let $I \subseteq P(\mathbb{R}^2)$ be any nice σ -ideal with $cov_h(Lines, I) = 2^{\omega}$. Then there exists a two point set $A \subseteq \mathbb{R}^2$, that is completely *I*-nonmeasurable Hamel base.

Corollary

There exists a two point set $A \subseteq \mathbb{R}^2$, that is completely nonmeasurable Hamel base.

Two-sets with a Hamel base

Definition

Let X be any uncountable Polish space. We say that a set $A \subseteq X$ is completely *I*-nonmeasurable iff

$$(\forall B \in \mathcal{B}_+(X)) \ A \cap B \neq \emptyset \ \land \ B \cap A^c \neq \emptyset$$

Note that if $I = [X]^{\leq \omega}$ then A is Bernstein set. Moreover if $I = \mathbb{L}$ then A is completely nonmeasurable subset of X.

Theorem

Let $I \subseteq P(\mathbb{R}^2)$ be any nice σ -ideal with $cov_h(Lines, I) = 2^{\omega}$. Then there exists a two point set $A \subseteq \mathbb{R}^2$, that is completely *I*-nonmeasurable Hamel base.

Corollary

There exists a two point set $A \subseteq \mathbb{R}^2$, that is completely nonmeasurable Hamel base.

Two-sets with a Hamel base

Definition

Let X be any uncountable Polish space. We say that a set $A \subseteq X$ is completely *I*-nonmeasurable iff

$$(\forall B \in \mathcal{B}_+(X)) \ A \cap B \neq \emptyset \ \land \ B \cap A^c \neq \emptyset$$

Note that if $I = [X]^{\leq \omega}$ then A is Bernstein set. Moreover if $I = \mathbb{L}$ then A is completely nonmeasurable subset of X.

Theorem

Let $I \subseteq P(\mathbb{R}^2)$ be any nice σ -ideal with $cov_h(Lines, I) = 2^{\omega}$. Then there exists a two point set $A \subseteq \mathbb{R}^2$, that is completely *I*-nonmeasurable Hamel base.

Corollary

There exists a two point set $A \subseteq \mathbb{R}^2$, that is completely nonmeasurable Hamel base.

Let $\{L_{\xi}: \xi < \mathfrak{c}\}$ all straight lines in the plane \mathbb{R}^2 ,

let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all positive Borel sets in \mathbb{R}^2 $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over \mathbb{Q} . Define $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- 1. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ contains precisely two points of } L_{\xi};$

4.
$$B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$$

5. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ is linearly independent over } \mathbb{Q};$

6.
$$h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta < \xi} A_{\zeta})$$
.

Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ all straight lines in the plane \mathbb{R}^2 , let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all positive Borel sets in \mathbb{R}^2 $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over \mathbb{Q} . Define $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- 1. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ contains precisely two points of } L_{\xi};$
- 4. $B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$
- 5. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ is linearly independent over } \mathbb{Q};$

6.
$$h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta \leq \xi} A_{\zeta}).$$

Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ all straight lines in the plane \mathbb{R}^2 , let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all positive Borel sets in \mathbb{R}^2 $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over \mathbb{Q} . Define $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- 1. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ contains precisely two points of } L_{\xi};$
- 4. $B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$
- 5. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ is linearly independent over } \mathbb{Q};$

6.
$$h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta \leq \xi} A_{\zeta}).$$

Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ all straight lines in the plane \mathbb{R}^2 , let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all positive Borel sets in \mathbb{R}^2 $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over \mathbb{Q} . Define $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- 1. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ contains precisely two points of } L_{\xi};$

4.
$$B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$$

5. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ is linearly independent over } \mathbb{Q};$

6.
$$h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta < \xi} A_{\zeta})$$
.

Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ all straight lines in the plane \mathbb{R}^2 , let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all positive Borel sets in \mathbb{R}^2 $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over \mathbb{Q} . Define $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- 1. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ contains precisely two points of } L_{\xi};$
- 4. $B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$
- 5. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ is linearly independent over } \mathbb{Q};$

6.
$$h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta \leq \xi} A_{\zeta})$$

Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ all straight lines in the plane \mathbb{R}^2 , let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all positive Borel sets in \mathbb{R}^2 $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over \mathbb{Q} . Define $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- 1. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ contains precisely two points of } L_{\xi};$

4.
$$B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$$

5. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ is linearly independent over } \mathbb{Q};$

6.
$$h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta < \zeta} A_{\zeta})$$

Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ all straight lines in the plane \mathbb{R}^2 , let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all positive Borel sets in \mathbb{R}^2 $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over \mathbb{Q} . Define $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- **1**. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ contains precisely two points of } L_{\xi};$
- 4. $B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$
- 5. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ is linearly independent over \mathbb{Q} ;

6.
$$h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta \leq \xi} A_{\zeta}).$$

Let $\{L_{\xi} : \xi < \mathfrak{c}\}$ all straight lines in the plane \mathbb{R}^2 , let $\{B_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all positive Borel sets in \mathbb{R}^2 $\{h_{\xi} : \xi < \mathfrak{c}\}$ be a Hamel base of \mathbb{R}^2 over \mathbb{Q} . Define $\{A_{\xi} : \xi < \mathfrak{c}\}$ of subsets of \mathbb{R}^2 such that for every $\xi < \mathfrak{c}$,

- **1**. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not have three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ contains precisely two points of } L_{\xi};$

4.
$$B_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$$

5. $\bigcup_{\zeta \leq \xi} A_{\zeta} \text{ is linearly independent over } \mathbb{Q};$

6.
$$h_{\xi} \in span_{\mathbb{Q}}(\bigcup_{\zeta \leq \xi} A_{\zeta}).$$

Definition If X is Polish space then $A \subseteq \mathbb{R}$ is s_0 -Marczewski iff

 $(\forall P \in Perf(X))(\exists Q \in Perf(X)) \ Q \subseteq P \land Q \cap A = \emptyset$

and $A \subseteq \mathbb{R}$ is *s*-Marczewski (*s*-measurable) iff

 $(\forall P \in Perf(X))(\exists Q \in Perf(X)) \ Q \subseteq P \land (Q \cap A = \emptyset \lor Q \subseteq A).$

Theorem

There exists a two point set $A \subseteq \mathbb{R}^2$, that is s_0 -Marczewski.

Definition

If X is Polish space then $A \subseteq \mathbb{R}$ is s_0 -Marczewski iff

 $(\forall P \in Perf(X))(\exists Q \in Perf(X)) \ Q \subseteq P \land Q \cap A = \emptyset$

and $A \subseteq \mathbb{R}$ is *s*-Marczewski (*s*-measurable) iff

 $(\forall P \in Perf(X))(\exists Q \in Perf(X)) \ Q \subseteq P \land (Q \cap A = \emptyset \lor Q \subseteq A).$

Theorem

There exists a two point set $A \subseteq \mathbb{R}^2$, that is s_0 -Marczewski.

Definition (Partial two-set)

We say that $A \subseteq \mathbb{R}^2$ is a partial two-set iff meets every line at most two times.

It is well known that the unit circle is a partial two-set which cannot be extended to two-set.

Theorem

There exists a two point set $A \subseteq \mathbb{R}^2$, that is s-nonmeasurable. Moreover A contains a subset of the unit circle of full outer measure.

Proof.

Let C be a unit circle, $Lines = \{l_{\xi} : \xi < \mathfrak{c}\}$ and $\mathcal{B}_+(C, \mathbb{L}) = \{P_{\xi} : \xi < \mathfrak{c}\}$. Define a sequences $\{A_{\xi} : \xi < \mathfrak{c}\}$ $\{y_{\xi} : \xi < \mathfrak{c}\}$ s.t. for every $\xi < \mathfrak{c}$

> Ll ののの ほ くぼ くぼ く (1) へ (1)

- 1. $|A_{\xi}| < \omega;$
- 2. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ does not contain three collinear points;
- 3. $\bigcup_{\zeta \leq \xi} A_{\zeta}$ contains precisely two points of L_{ξ} ;
- 4. $P_{\xi} \cap \bigcup_{\zeta \leq \xi} A_{\zeta} \neq \emptyset;$
- 5. $y_{\xi} \in P_{\xi};$
- 6. $A_{\xi} \cap \{y_{\zeta} : \zeta \leq \xi\} = \emptyset.$

Then $A = \bigcup_{\xi < \mathfrak{c}} A_{\xi}$ is required set.

Definition (κ -set)

We say that $A \subseteq \mathbb{R}^2$ is an κ -set iff every line meets exactly in κ -points.

Definition (κ -iso cov)

We say that $A \subseteq \mathbb{R}^2$ is κ -iso cov set iff for every $X \in [\mathbb{R}^2]^{\kappa}$ there exist isometry g on the real plane such that $g[X] \subseteq A$.

Theorem For $n \ge 2$ there exists n-set which is not 2-iso cov set

Theorem For $n \ge 2$ there exist n-set which is n-iso cov set

Theorem There exists ω -set which is not 2-iso cov set

Theorem There exists ω -set which is ω -iso cov set Theorem For $n \ge 2$ there exists n-set which is not 2-iso cov set

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem For $n \ge 2$ there exist n-set which is n-iso cov set

Theorem There exists ω -set which is not 2-iso cov set

Theorem There exists ω -set which is ω -iso cov set

Decomposition of two-sets

Theorem

Every two-set can be decomposed onto two bijections of the real line \mathbb{R} .

Theorem

There exists a null and meager two-set $A \subseteq \mathbb{R}^2$ s.t. every Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ cannot be contained in A.

and

Theorem

There exists a null and meager two-set $A \subseteq \mathbb{R}^2$ s.t. every Baire measurable function $f : \mathbb{R} \to \mathbb{R}$ cannot be contained in A.

Decomposition of two-sets

Theorem

Every two-set can be decomposed onto two bijections of the real line \mathbb{R} .

Theorem

There exists a null and meager two-set $A \subseteq \mathbb{R}^2$ s.t. every Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ cannot be contained in A. and

Theorem

There exists a null and meager two-set $A \subseteq \mathbb{R}^2$ s.t. every Baire measurable function $f : \mathbb{R} \to \mathbb{R}$ cannot be contained in A.

Two-set vs. Luzin set

Fact

Any two-set cannot be

- Bernstein set
- Luzin set and
- Sierpiński set.

Proof.

1) Each line L is a perfect set such that $|A \cap L| = 2$, so A cannot be Bernstein.

2) Let *M* be a perfect meager subset of \mathbb{R} . Then $M \times \mathbb{R}$ is meager and $|(M \times \mathbb{R}) \cap A| = 2|M| = \mathfrak{c}$.

3) Let N be a perfect null subset of \mathbb{R} . Then $N \times \mathbb{R}$ is null and $|(N \times \mathbb{R}) \cap A| = 2|N| = \mathfrak{c}$.

Theorem Assume CH then

- 1. there exists partial two point set A that is Luzin set,
- 2. there exists partial two point set B that is Sierpiński set.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Partial two-sets with combinatorial properties

Definition (ad family)

The set $\mathcal{A} \subset [\omega]^{\omega}$ is almost disjoint family (ad) iff any two distinct members of \mathcal{A} has finite intersection.

 \mathcal{A} is (mad) iff \mathcal{A} is a maximal respect to the \subseteq .

Definition (Eventually different functions)

We say that $\mathcal{A} \subseteq \omega^{\omega}$ is eventually different family in Baire space ω^{ω} iff every two distinct members $x, y \in \mathcal{A}$ are equal only on the finite subset of the ω .

 ${\cal A}$ is maximal eventually different family iff ${\cal A}$ is a maximal respect to the inclusion relation.

Theorem (CH)

Let $h : \mathbb{R} \to \omega^{\omega}$ be a standard Borel bijection. Then there exist the partial two-point set $A \subseteq \mathbb{R}^2$ on the real plane such that

 $\{h(\pi_i(x)) \in \omega^{\omega} : x \in A \land i \in \{0,1\}\}\$ - max. eventually different.

where π_i are projections onto *i*-th axis.

Remark

The same result is about mad family instead maximal evantually different functions family.

Theorem (CH)

Let $h : \mathbb{R} \to \omega^{\omega}$ be a standard Borel bijection. Then there exist the partial two-point set $A \subseteq \mathbb{R}^2$ on the real plane such that

 $\{h(\pi_i(x)) \in \omega^{\omega} : x \in A \land i \in \{0,1\}\}\$ - max. eventually different.

where π_i are projections onto *i*-th axis.

Remark

The same result is about mad family instead maximal evantually different functions family.

Consider sequence $(M_{\alpha} : \alpha < \omega_1)$ the increasing continuous chain of the countable substst of \mathbb{R} with $\mathbb{R} \subseteq \bigcup_{\alpha < \omega_1} M_{\alpha}$ Let us construct the transfinite sequence $(A_{\alpha}, F_{\alpha}) : \alpha < \omega_1$ s.t.

- 1. $(\forall \alpha < \omega_1) A_{\alpha} = \{x_{\xi} \in \mathbb{R}^2 : \xi < \alpha\} \in M_{\alpha}$ is a partially two-point set,
- 2. $(\forall \alpha < \omega_1) F_{\alpha} = \{h \circ \pi_i(x_{\xi}) : x_{\xi} \in A_{\alpha} \land i \in \{1, 2\}\}$ forms family eventually different functions,
- 3. $(\forall \alpha < \omega_1)(\forall u \in M_\alpha \cap (\omega^\omega \setminus F_\alpha))(\exists v \in F_{\alpha+1}) |u \cap v| = \omega.$

.. Proof

Correctness: let us assume that A_{α} is build at $\alpha < \omega_1$ step. Enumerate $(\omega^{\omega} \setminus F_{\alpha}) \cap M_{\alpha} = \{y_n : n \in \omega\}$. In H_{κ} model we can to construct the sequence $x_n : n \in \omega$ as follows if $\{x_k : k < n\}$ is build then we can choose x_n such that

for any u if $u \in F_{\alpha} \cup \{x_k : k < n\}$ then

$$|h(x_n) \cap u| < \omega \wedge (h^{-1}(x_n), h^{-1}(y_n)) \notin W_{lpha}$$

where $W_{\alpha} = \{ l \in \text{lines} : |l \cap Z_{\alpha}| = 2 \}$ and

$$Z_{\alpha} = \{(x, y) : x, y \in h^{-1}[F_{\alpha}] \cup \{x_k : k < n\} \cup \{y_n : n \in \omega\} \land x \neq y\}.$$

(日) (同) (三) (三) (三) (○) (○)

Using properties (1), (2) and (3) it is easy to show that $A = \bigcup_{\alpha < \omega_1} A_{\alpha}$ fulfil the assertion of this Theorem.

Here we adopt the proof of the Kunen Theorem about existence of the indestructible mad family (see [Ku] for example).

Theorem

It is consistent with ZFC theory that \neg CH and there exists partial two-set for which the image of the set of all coordinates forms the mad family size ω_1 by standard bijection $h : \mathbb{R} \rightarrow P(\omega)$.

Theorem It is consistent that $\neg CH$ and

$$(\exists \mathcal{C} \in [\mathbb{R}^2]^{\omega_2})(\exists \mathcal{A} \in \mathbb{L})(\exists D_1 \in [\mathcal{C}]^{\omega_1})$$

s.t

$$A + D_1 = \mathbb{R}^2 \wedge C$$
 is partial two-set.

Moreover the set C is a Luzin set.

Let *V* - ground model with *CH*. Now $\mathbb{P} = Fn(\omega_2, 2)$ be forcing adding indenpendetly $c_{\alpha} : \alpha < \omega_2$ Cohen points on the \mathbb{R}^2 . If $\alpha < \beta < \gamma < \omega_2$ then c_{γ} is Cohen over c_{α} and c_{β} . Then $c_{\gamma} \notin I_{\alpha,\beta}$ where $c_{\alpha}, c_{\beta} \in I_{\alpha,\beta}$ forms line $I_{\alpha,\beta} \in \mathbb{K}$. We see that $C = \{c_{\alpha} : \alpha < \omega_2\}$ is partial two set.

C is Luzin:

Let *G* be \mathbb{P} -generic ultrafilter over *V*.

Take $x \in \omega^{\omega} \cap V[G]$ be any Borel code for a meager subset of \mathbb{R}^2 . Find $I \in [\omega_2]^{\omega}$ and nice name $\tilde{x} \in V^{Fn(I,2)}$ for x. Define

 $G_{I} = \{ p \in Fn(I,2) : p \in G \} \ G_{\omega_{2} \setminus I} = \{ p \in Fn(\omega \setminus I,2) : p \in G \}.$ Then

- $\blacktriangleright V[G] = V[G_I][G_{\omega_2 \setminus I}]$
- $x \in V[G_I]$ and

▶ for any $\alpha \in \omega_2 \setminus I \ c_\alpha \in V[G] \setminus V[G_I]$ is Cohen over $V[G_I]$. Then $C \cap \#x \subseteq \{c_\alpha : \alpha \in I\}$ is countable.

... Proof

Consider a Marczewski decomposition $A \cup B = \mathbb{R}^2$ where $A \in \mathbb{L}$, $B \in \mathbb{K}$ and $A \cap B = \emptyset$. Choose $D \in V[G] \cap [\omega_2]^{\omega_1}$ and $x \in V[G]$ Then by *c.c.c.* of $Fn(\omega_2, 2)$ we have

•
$$\exists D_1 \in V \cap [\omega_2]^{\omega_1} \ D \subseteq D_1$$
 and

►
$$(\exists I \in [\omega_2]^{\omega}) \ V[G] = V[G_I][G_{\omega_2 \setminus I}] \text{ and } x \in V[G_I]$$

•
$$(\forall \alpha \in D \setminus I) c_{\alpha} \in A - \{x\}$$

Then finally in V[G] we have $\mathbb{R}^2 \subseteq A - C_{D_1 \setminus I}$ where $C_{D_1 \setminus I} = \{c_\alpha \in C : \alpha \in D_1 \setminus I\}.$

Thank You

References

- Carlson T.J., Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 No. 2 (1993), 577–586.
- Ciesielski, Krzysztof, Set theory for the working mathematician. London Mathematical Society Student Texts, 39. Cambridge University Press, Cambridge, 1997. xii+236 pp. ISBN: 0-521-59441-3; 0-521-59465-0.
- Dijkstra, J.J., Kunen K., van Mill J., Hausdorff measures and two point set extensions, Fund. Math., 157 (1998), 43–60.
- Dijkstra, J.J. and van Mill J., Two point set extensions a counterexample, Proc. Amer. Math. Soc. 125 (1997), 2501–2502.
- Kunen K., Set Theory, An Introduction to Indepedence Proofs, North Holland, Amsterdam, New York, London (1980),

- Larman, D. G., A problem of incidence. J. London Math. Soc. 43 1968 407–409.
- Mauldin, R. D., On sets which meet each line in exactly two points. Bull. London Math. Soc. 30 (1998), no. 4, 397–403.
- Mazurkiewicz S., O pewnej mnogości płaskiej, która ma z każdą prostą dwa i tylko dwa punkty wspólne (Polish), Comptes Rendus des Séances de la Société des Sciences et Lettres de Varsovie 7 (1914), 382–384; French transl.: Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs, in: Stefan Mazurkiewicz, Traveaux de Topologie et ses Applications (K. Borsuk et al., eds.), PWN, Warsaw, 1969, pp. 46–47.

Miller, A. W., Infinite combinatorics and definability. Ann. Pure Appl. Logic 41 (1989), no. 2, 179–203.

- Schmerl, James H., Some 2-point sets. Fund. Math. 208 (2010), no. 1, 87–91.
- Walsh, J.T., Marczewski sets, measure and the Baire property, Fund. Math., 129 (1988), 83–89.