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Notation and Terminology

Let (X ,+) be any uncountable Polish abelian group and let
I ⊆P(X ) s.t

I I is σ-ideal with a Borel base and

I I contains all singletons and

I I translation invariant.

The σ-ideal I is nice if has properties as above.
Let B+(I ) = Borel(X ) \ I be set of all I -positive Borel sets.
Perf (X ) stands for set of all perfect subsets of X
In most part of presentation X is a real plane R2 and + denotes
adding vectors.



Definition (Cardinal coefficients)

Let X - Polish space and I ⊆P(X ) be σ ideal as above. Then for
any F ⊂ I let

cov(F , I ) = min{|A | : A ⊂ F ∧
⋃

A = X}

covh(F , I ) = min{|A | : A ⊂ F ∧ (∃B ∈ B+(I ))
⋃

A = B}

Lines be the set of all lines in R2.
L σ-ideal of null sets and
K σ-ideal of all meager subsets of X .

Fact
covh(Lines,L) = 2ω, covh(Lines,K) = 2ω.
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Definition (Two-set)

A subset X ⊆ R2 of the real plane is a two-set iff meets every line
in exactly two points.

Theorem (Mazurkiewicz 1914)

There exist a two-set.



Two-sets with a Hamel base

Definition
Let X be any uncountable Polish space. We say that a set A ⊆ X
is completely I -nonmeasurable iff

(∀B ∈ B+(X )) A ∩ B 6= ∅ ∧ B ∩ Ac 6= ∅

Note that if I = [X ]≤ω then A is Bernstein set. Moreover if I = L
then A is completely nonmeasurable subset of X .

Theorem
Let I ⊆ P(R2) be any nice σ-ideal with covh(Lines, I ) = 2ω. Then
there exists a two point set A ⊆ R2, that is completely
I -nonmeasurable Hamel base.

Corollary

There exists a two point set A ⊆ R2, that is completely
nonmeasurable Hamel base.
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Proof
Let {Lξ : ξ < c} all straight lines in the plane R2,
let {Bξ : ξ < c} be an enumeration of all positive Borel sets in R2

{hξ : ξ < c} be a Hamel base of R2 over Q.
Define {Aξ : ξ < c} of subsets of R2 such that for every ξ < c,

1. |Aξ| < ω;

2.
⋃
ζ≤ξ

Aζ does not have three collinear points;

3.
⋃
ζ≤ξ

Aζ contains precisely two points of Lξ;

4. Bξ ∩
⋃
ζ≤ξ

Aζ 6= ∅;

5.
⋃
ζ≤ξ

Aζ is linearly independent over Q;

6. hξ ∈ spanQ(
⋃
ζ≤ξ

Aζ).

Then, the set A =
⋃
ξ<c

Aξ will have desired property.
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Marczewski ideal

Definition
If X is Polish space then A ⊆ R is s0-Marczewski iff

(∀P ∈ Perf (X ))(∃Q ∈ Perf (X )) Q ⊆ P ∧ Q ∩ A = ∅

and A ⊆ R is s-Marczewski (s-measurable) iff

(∀P ∈ Perf (X ))(∃Q ∈ Perf (X )) Q ⊆ P ∧ (Q∩A = ∅ ∨ Q ⊆ A).

Theorem
There exists a two point set A ⊆ R2, that is s0-Marczewski.
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Definition (Partial two-set)

We say that A ⊆ R2 is a partial two-set iff meets every line at
most two times.

It is well known that the unit circle is a partial two-set which
cannot be extended to two-set.



Theorem
There exists a two point set A ⊆ R2, that is s-nonmeasurable.
Moreover A contains a subset of the unit circle of full outer
measure.

Proof.
Let C be a unit circle, Lines = {lξ : ξ < c} and
B+(C ,L) = {Pξ : ξ < c}. Define a sequences {Aξ : ξ < c}
{yξ : ξ < c} s.t. for every ξ < c

1. |Aξ| < ω;

2.
⋃
ζ≤ξ

Aζ does not contain three collinear points;

3.
⋃
ζ≤ξ

Aζ contains precisely two points of Lξ;

4. Pξ ∩
⋃
ζ≤ξ

Aζ 6= ∅;

5. yξ ∈ Pξ;

6. Aξ ∩ {yζ : ζ ≤ ξ} = ∅.
Then A =

⋃
ξ<c Aξ is required set.



Iso-covering set

Definition (κ-set)

We say that A ⊆ R2 is an κ-set iff every line meets exactly in
κ-points.

Definition (κ-iso cov)

We say that A ⊆ R2 is κ-iso cov set iff for every X ∈ [R2]κ there
exist isometry g on the real plane such that g [X ] ⊆ A.



Theorem
For n ≥ 2 there exists n-set which is not 2-iso cov set

Theorem
For n ≥ 2 there exist n-set which is n-iso cov set

Theorem
There exists ω-set which is not 2-iso cov set

Theorem
There exists ω-set which is ω-iso cov set
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Decomposition of two-sets

Theorem
Every two-set can be decomposed onto two bijections of the real
line R.

Theorem
There exists a null and meager two-set A ⊆ R2 s.t. every Lebesgue
measurable function f : R→ R cannot be contained in A.

and

Theorem
There exists a null and meager two-set A ⊆ R2 s.t. every Baire
measurable function f : R→ R cannot be contained in A.
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Two-set vs. Luzin set

Fact
Any two-set cannot be

I Bernstein set

I Luzin set and

I Sierpiński set.

Proof.
1) Each line L is a perfect set such that |A ∩ L| = 2, so A cannot
be Bernstein.
2) Let M be a perfect meager subset of R. Then M × R is meager
and |(M × R) ∩ A| = 2|M| = c.
3) Let N be a perfect null subset of R. Then N × R is null and
|(N × R) ∩ A| = 2|N| = c.



Theorem
Assume CH then

1. there exists partial two point set A that is Luzin set,

2. there exists partial two point set B that is Sierpiński set.



Partial two-sets with combinatorial properties

Definition (ad family)

The set A ⊂ [ω]ω is almost disjoint family (ad) iff any two distinct
members of A has finite intersection.

A is (mad) iff A is a maximal respect to the ⊆.

Definition (Eventually different functions)

We say that A ⊆ ωω is eventually different family in Baire space
ωω iff every two distinct members x , y ∈ A are equal only on the
finite subset of the ω.

A is maximal eventually different family iff A is a maximal respect
to the inclusion relation.



Theorem (CH)

Let h : R→ ωω be a standard Borel bijection. Then there exist the
partial two-point set A ⊆ R2 on the real plane such that

{h(πi (x)) ∈ ωω : x ∈ A ∧ i ∈ {0, 1} } - max. eventually different.

where πi are projections onto i-th axis.

Remark
The same result is about mad family instead maximal evantually
different functions family.



Theorem (CH)

Let h : R→ ωω be a standard Borel bijection. Then there exist the
partial two-point set A ⊆ R2 on the real plane such that

{h(πi (x)) ∈ ωω : x ∈ A ∧ i ∈ {0, 1} } - max. eventually different.

where πi are projections onto i-th axis.

Remark
The same result is about mad family instead maximal evantually
different functions family.



Proof

Consider sequence (Mα : α < ω1) the increrasing continuous chain
of the countable subetst of R with R ⊆

⋃
α<ω1

Mα

Let us construct the transfinite sequence (Aα,Fα) : α < ω1 s.t.

1. (∀α < ω1) Aα = {xξ ∈ R2 : ξ < α} ∈ Mα is a partially
two-point set,

2. (∀α < ω1) Fα = {h ◦ πi (xξ) : xξ ∈ Aα ∧ i ∈ {1, 2}} forms
family eventually different functions,

3. (∀α < ω1)(∀u ∈ Mα ∩ (ωω \ Fα))(∃v ∈ Fα+1) |u ∩ v | = ω.



.. Proof

Correctness: let us assume that Aα is build at α < ω1 step.
Enumerate (ωω \ Fα) ∩Mα = {yn : n ∈ ω}.
In Hκ model we can to construct the sequence xn : n ∈ ω as follows
if {xk : k < n} is build then we can choose xn such that

for any u if u ∈ Fα ∪ {xk : k < n} then

|h(xn) ∩ u| < ω ∧ (h−1(xn), h−1(yn)) /∈Wα

where Wα = {l ∈ lines : |l ∩ Zα| = 2} and

Zα = {(x , y) : x , y ∈ h−1[Fα]∪{xk : k < n}∪{yn : n ∈ ω}∧x 6= y}.

Using properties (1), (2) and (3) it is easy to show that
A =

⋃
α<ω1

Aα fulfil the assertion of this Theorem.



Here we adopt the proof of the Kunen Theorem about existence of
the indestructible mad family (see [Ku] for example).

Theorem
It is consistent with ZFC theory that ¬CH and there exists partial
two-set for which the image of the set of all coordinates forms the
mad family size ω1 by standard bijection h : R→ P(ω).



Theorem
It is consistent that ¬CH and

(∃C ∈ [R2]ω2)(∃A ∈ L)(∃D1 ∈ [C ]ω1)

s.t
A + D1 = R2 ∧ C is partial two-set.

Moreover the set C is a Luzin set.



Proof

Let V - ground model with CH.
Now P = Fn(ω2, 2) be forcing adding indenpendetly cα : α < ω2

Cohen points on the R2.
If α < β < γ < ω2 then cγ is Cohen over cα and cβ.
Then cγ /∈ lα,β where cα, cβ ∈ lα,β forms line lα,β ∈ K.
We see that C = {cα : α < ω2} is partial two set.



C is Luzin:

Let G be P-generic ultrafilter over V .
Take x ∈ ωω ∩ V [G ] be any Borel code for a meager subset of R2.
Find I ∈ [ω2]ω and nice name x̃ ∈ V Fn(I ,2) for x .
Define
GI = {p ∈ Fn(I , 2) : p ∈ G} Gω2\I = {p ∈ Fn(ω \ I , 2) : p ∈ G}.
Then

I V [G ] = V [GI ][Gω2\I ]

I x ∈ V [GI ] and

I for any α ∈ ω2 \ I cα ∈ V [G ] \ V [GI ] is Cohen over V [GI ].

Then C ∩#x ⊆ {cα : α ∈ I} is countable.



... Proof

Consider a Marczewski decomposition A ∪ B = R2

where A ∈ L, B ∈ K and A ∩ B = ∅.
Choose D ∈ V [G ] ∩ [ω2]ω1 and x ∈ V [G ]
Then by c .c .c . of Fn(ω2, 2) we have

I ∃D1 ∈ V ∩ [ω2]ω1 D ⊆ D1 and

I (∃I ∈ [ω2]ω) V [G ] = V [GI ][Gω2\I ] and x ∈ V [GI ]

I (∀α ∈ D \ I ) cα ∈ A− {x}
Then finally in V [G ] we have R2 ⊆ A− CD1\I where
CD1\I = {cα ∈ C : α ∈ D1 \ I}.



Thank You
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